DataPlane Broker: Open WAN control for
multi-site service orchestration

Steven Simpson, Arsham Farshad, Paul McCherry, Abubakr Magzoub, William Fantom,
Charalampos Rotsos, Nicholas Race, David Hutchison
School of Computing and Communications, Lancaster University

Abstract—NFV-MANO has become the de-facto standard for
network service orchestration in future programmable network
infrastructures. Specifically, relevant standards define an archi-
tecture and a data model that allows an orchestration entity to
deploy, dynamically configure and monitor virtual and physical
network function across virtualized datacenters. Although the
model offers extensive details for network functions management
and host-level network configuration, end-to-end connectivity
management beyond the datacenter remains limited, modeled by
the WAN Infrastructure Manager (WIM) abstraction. Although
many open-source service management frameworks offer NFV-
MANO support, the community still lacks a WIM reference
implementation. In this paper, we present the DataPlane Broker
(DPB), the first open source WIM implementation for Ethernet
networks. The system develops an extensive data model to
seamlessly translate NFV-MANO connectivity requirement to
network configuration for SDN-enabled networks and supports
point-to-point and point-to-multipoint virtual links with strong
QoS guarantees. DPB currently offers complete integration with
the current stable OSM version (v5) and we demonstrate that
it provides good scaling properties under high service provision
requirements.

I. INTRODUCTION

Network Function Virtualization (NFV) is a recent network-
ing paradigm promoting the adoption of cloud technologies
in the deployment and management of network middleboxes.
Specifically, the paradigm advocates the replacement of tradi-
tional hardware-accelerated black-box middlebox devices by
software systems, running as virtual machines on virtualized
hosts. In parallel, existing vendor-locked remote control proto-
cols are replaced by a unified and open management interface.
NFV technologies offer infrastructure managers the ability to
compress operational costs, while offering greater flexibility,
diversity and packet processing elasticity.

NFV management standardization is predominantly driven
by the ETSI NFV SIG [8]]. The group develops a wide portfolio
of standards and reference implementations, including the NFV-
MANO architecture and data models. The proposed architecture
consists of three management layers: The Virtual Infrastructure
Manager (VIM) controlling infrastructure physical resources;
the NFV manager (NFVM) controlling and monitoring running
NFV instances; and the NFV Orchestrator (NFVO) responsible
for fulfilling network service requests from external users.

Although NFV-MANO was initially designed to support NFV
management within a single datacenter, the development of new
technological paradigms like the Mobile Edge Cloud [6] and
cloud-RAN [3]] have forced standards to consider requirements
for cross-site service deployment. A key requirement to meet

these requirements is introducing support for network forward-
ing and resource management in standards. This functionality
was briefly discussed in the original NFV-MANO standards
and abstracted by the WAN Infrastructure Manager (WIM) [[11]]
entity. A WIM is a special type of VIM, managing exclusively
network resources and offering connectivity between NFV
datacenters. Specifically, a WIM is a shim layer mediating
MANO virtual link requests to network controllers, in an effort
to provide point-to-point and multi-point connectivity across
NFV datacenters.

In order to increase standard adoption, the ETSI NFV
SIG is developing the OSM project, a reference NFV-MANO
implementation. Unfortunately, although, OSM offers extensive
support for VNF management, through tight integration with
the OpenStack and JuJu toolstacks, the development of the
networking subsystem is limited. Specifically, WIM support
was introduced in the fifth OSM release, and at the time of
writing no open-source WIM implementation is available.

In this paper we present the Data Plane Broker (DPB), the
first open-source WIM implementation, built for the MANO
standards. Our work exhibits the following key contributions:

« An extensible data model for the deployment of connec-
tivity services over SDN systems.

« A resource allocation and path computation algorithm with
support for best-effort deployment of point-to-point and
multi-point virtual links with strong bandwidth guarantees.

« An open-source WIM implementation and an OSM driver
compatible with the latest stable version of OSM (release
5).

II. MULTI-SITE SERVICE DEPLOYMENT

NFV-MANO is currently the de-facto standard for service
orchestration. The goal of the standards is to develop a set of
data models to control and manage resources in a virtualized
datacenter and facilitate the deployment, configuration, man-
agement and monitoring of service chains consisting of virtual
and physical network functions. Initial standards aimed to
support single VIM deployment scenarios, while the interface
towards local programmable networks remained undefined. In
parallel, a special type of VIM was defined, dubbed as the
WIM, to control WAN or access networks using an SDN
controller and to provide cross-site connectivity. An example
WIM architecture is depicted in Figure [T} where a service is
deployed across two datacenters, VIM1 and VIM2. A WIM
controller manages the network infrastructure connecting the

two sites and can provision connectivity between the two end-
points. The resulting link will offer layer-2 connectivity to the
two sites and enable a single broadcast domain between the
two virtual links (VLD1).

In 2018, the ETSI NFV SIG released a white paper [12]
discussing a series of use cases for multi-site connectivity and
developing a discussion of required standards extensions. In
parallel, a work group within the ETSI NFV SIG is currently
developing a detailed information model for a WIM interfaces,
inspired by the IETF ACTN standards [2].

OSM is the reference implementation of the NFV-MANO
standards, offering an automation and coordination framework
for the the provision and control of network services and func-
tions. In order to provision connectivity between datacenters,
OSM release 5 has introduced a non-standardized WIM plugin
model. WIM plugins allow an OSM instance to embed in
the service deployment the ability to control SDN switches
and establish the necessary point to point and/or multipoint
connections whilst providing the necessary bandwidths. The
interface allows OSM to create, monitor and destroy point-to-
point links.

Based on the goals of the WIM abstraction, Bravalheri et
al. [1] have developed an integration of the ONF Transport API
with the WIM model in OSM and have demonstrated the ability
to control optical links two provide multi-site connectivity.
Similarly, the SGUK Exchange infrastructure [9] has presented
a series of demos of a multi-site NFV testbed offering support
for dynamic connectivity provision. Nonetheless, currently no
VIM implementation are currently available open-source.

The specification of network orchestration interfaces is a
goal for many SDOs. In addition to the aforementioned effort
of the IETF ACTN WG, the Open Grid Form (OGF) has
developed a Network Services Framework [10] (NSF) for
slicing virtual networks from a physical topology, defining
a Network Services Interface (NSI) for interaction between
agents providing and requesting network services. This interface
allows the definition of point-to-point uni- or bi-directional
services, as well as anycast and multicast, including a single
bandwidth parameter. OpenNSA, an implementation of NSI, is
used in GEANT Testbeds Servic (GTS), whose dynamically
deployed network topologies (akin to NSDs) consist of network
entities with only two endpoints. Finally, the GEANT’s DynPaC
framework [7]] develops a dynamic interfaces for Bandwidth
on demand services over the GEANT infrastructure. The
orchestration layer is implemented as part of the OpenDayLight
SDN controller framework and uses stateful PCE [5]] to control
resource allocation in the underlying network infrastructure.

III. DATA PLANE BROKER

WAN and access networks vary significantly with respect to
employed network technologies (e.g. optical, microwave, MPLS
etc.) and topologies. DPB design aims to provide an extensi-
ble framework which abstracts the underlying infrastructure
diversity. The architecture of a DPB orchestrator is presented
in Figure 1| DPB follows a multi-layer design approach and
consists of three key layers.

Uhttps://gts.geant.net/

At the top of the system is the aggregator layer, which is
responsible for service persistence, allocation of trunk labels,
and end-to-end path computation (§III-C). The aggregator layer
exposes a single northbound interface (NBI) to the service
orchestrator for the management of logical networks across
datacenters. In addition, the NBI of an aggregator can be used
by a higher layer aggregator, enabling control delegation.

The logical-switch layer (§II-B) constitutes the middle
layer of the DPB architecture and is responsible for persisting
configuration and forwarding state for network devices, and
abstracting technology-specific configuration details from the
aggregator layer. The latter is enabled through the technology
adaptation layer, which translates forwarding policy into
technology-specific configuration. The communication between
the different layers of DPB is facilitated by a hierarchical data

model (§III-A).

A. Data Model

In order to support the technology and topology diversity,
DPB develops a hierarchical model to abstract network connec-
tivity support between the different network management layers.
The DPB NBI follows a “one big switch” abstraction; the un-
derlying topology remains hidden from the orchestrator, which
can request connectivity for any arbitrary group of network
terminals, i.e. VIMs. The orchestrator can request from DPB to
manage a (logical) network; a set of network services, i.e. layer-
2 broadcast domains, between network terminals and with spe-
cific bandwidth guarantees. A network service is modeled as a
set of (circuit-id, ingress-bandwidth, egress-bandwidth) tuples.
A circuit effectively is a unique identifier describing the delivery
of different network service to the same specific terminal. Fig-
ure [2] provides an example logical network with six terminals,
and one service connecting three circuits (sitel-opst:435,
site2-0fx:961, site3-0fx:2010) and another service con-
necting two (sitel-opst:91, sitel-ofx:961).

The DPB aggregator layer models network services as
a collection of terminals, networks and trunks, connecting
different circuits. Similar to a logical network, aggregation layer
networks have also terminals, which reflect either network-wide
network endpoints or intermediate devices ports connecting to
an internal physical link. DPB defines two network types. A
logical switch network is the simplest network type, modeling
a single switching fabric, e.g. an OpenFlow datapath. An
aggregator (network) is a complex network type abstracting
the control and connectivity of different inferior networks,
which can be either switch networks or smaller aggregator
networks. Fig. 3] shows an aggregator with two terminals
(mapping to two inferior networks’ terminals) and one trunk
(connecting the two inferiors’ other terminals). A service
across the aggregator between circuits sitel-opst:91 and
site2-opst:961 is realized as a service on sitel between
opst:91 and site2:73, a service on site2 between sitel:73
and opst:961, and allocation of label 73 on the trunk.

A trunk models a slice of a physical link connecting two
network terminals of inferior networks. A trunk is a set of
virtual links with bandwidth allocated in each direction to each
terminal, as well as having unallocated bandwidth and labels.

https://gts.geant.net/

Orchestrator (OSM)

’ Aggregator ‘

LogicalSwitch

CorsaAdaptor
L.

LogicalSwitch

OFAdaptor

.
.
.

/

P CorsaDPBApp OFDPBApp
wei] [we] .y ﬁ ol L« [wes | [vner]
g~ REST, ~ = |3
—_— [l -
o Yy OpenFlow z 2
> 2 P S o
8— mgmt Vlan:73 Vian:4 8—
| Hypervisor NIC.91 3 Vian91 VFC 2 Vian73 - NIC.4 Hypervisor ~
Corsa Switch Generic OpenFlow Switch

Fig. 1: DPB offers an network control NBI to Service Orchestrators. It multilayer architecture offers the ability to abstract control capabilities under
TODO INCOMPLETE SENTENCE

site3-opst

Fig. 2: A logical network
with six terminals and two
services

Fig. 3: n aggregator operating two
inferior networks

Management and control of each trunk is the responsibility of
exactly one aggregator.

B. Logical Switch and Adaptor Layer

The main functionalities of the DPB logical switch layer
is switch configuration and service mapping persistence and
service deployment using an appropriate switch adaptor. The
layer offers two primary management interface: Switch andNet-
workControl. The Switch management interface allows runtime
control of mappings between terminal and fabric interface
names. NetworkControl on the other hand can be used to
persist services configurations and subsequent invocations in
the adaptor layer.

The DPB adaptor layer is responsible to abstract switch
technology differences during service configuration and to
optimize service deployment. The current DPB release offers
for two switch adaptors: generic OpenFlow and Corsa.

a) Generic OpenFlow Adaptor: DPB offers a generic
1.3 OpenFlow switch adaptor, that uses OpenFlow metering
capabilities, to deliver circuit connectivity. The OpenFlow
Adaptor relies on custom Ryu App to translate DPB switch
configuration into appropriate OpenFlow commands.

The REST API of the app accepts circuit descriptions which
specify an OpenFlow port, an optional VLAN tag, an optional
inner VLAN tag, and optional ingress/egress rates. Basic
OpenFlow flows are used to forward traffic between circuits,
while OpenFlow meters are used to enforce resource control.

The controller uses three OpenFlow tables (T0, T1, T2) and
the group table to implement E-Line behavior for groups of
two circuits, and learning-switch behavior for larger groups.
Resource control requires up to two meter entries per circuit,
so two meter identifiers are similarly allocated.

Corsa Adaptor: The Corsa DP2000 [4] series switches are
deeply-programmable SDN switch platforms, built around an
FPGA architecture. The vendor offers a wide range of FPGA
bitfiles and software drivers, that allow network managers
to deploy specialized switching logic optimized for specific
network setting (e.g. hardware-accelerate Quagga routers).

The DPB codebase offers a Corsa switch adaptor, compatible
with the OpenFlow switch firmware. The adaptor exploits the
virtualization capabilities of the platform, to a improve QoS
and tunnel management. Specifically, the adaptor uses the
management interface of the switch to create virtual ports and
switches for each service, while network resource policies are
enforced using switch and port configuration mechanisms.

The Corsa adaptor uses the management REST API to
allocate a dedicates VFC, which is configured to connect to a
custom Corsa Ryu Application. When a new service is created,
its circuits’ terminals are mapped to physical ports and its
circuits’ labels identify specific VLANs on those ports. Spare
virtual ports of the VFC are allocated to the service, and
attached to the identified tagged ports. In parallel, a shaping
parameter is set on each virtual port based on the corresponding
circuit’s egress rate, while ingress rate sets the attachment’s
metering. VLAN tags associated with a virtual port, as well
as metering and shaping configurations remain invisible to the
VFC’s OpenFlow rules and controllers.

The applied packet forwarding logic, depend on service
port cardinality. If only two ports are configured for a service,
then the adaptor uses static OpenFlow rules to forward traffic
between the two ports. If more than two ports are allocated
for a service, then a learning switch control application is used
on a per-service basis.

(c) Computed
bandwidth
requirements in each
direction of each
edge

(b) The tree with
contributions
summed from each
direction

(a) Sums of terminal
ingress and egress
bandwidths

Fig. 4: A tree connecting four vertices with distinct ingress and egress
requirements

C. Aggregator Layer

The Aggregator layer is primarily responsible to interface
with external control entities (e.g. orchestrator), as well as
logical switches and define the required configurations to deliver
connectivity services. This layer exposes two interfaces: an
Aggregator and a NetworkControl interface. The Aggregator
interface is a configuration interface and allowing network
managers to define network topology and terminal name to
network mappings. The NetworkControl interface is the same
interface as in the logical layer and allows an aggregator to
present itself as a logical switch to another aggregator and
seamlessly enable the ability to form control hierarchies.

Path computation in the Aggregator uses a Bandwidth-
aware Spanning-Tree Algorithm. The algorithm is built around
a spanning tree algorithm and uses available and required
bandwidth values as a constraint in tree computation. It
can compute point-to-point as well multi-point connectivity
requirements with strong bandwidth guarantees.

The algorithm assumes that the aggregator, through network
manager configuration and by monitoring the inferior aggre-
gator and logical switch networks, has complete knowledge
of the available bandwidth to connect terminal pairs in an
inferior network, as well as connectivity characteristics between
terminals of different inferior networks (i.e. trunk links). The
algorithm generates a set of tuples describing trunk link
allocations and terminal connections in an inferior network.

The algorithm initially generates a weighted connectivity
graph, with each edge derived either from a trunk (using its
available capacity as the weight) or a terminal connection in
an inferior network (with a zero weight). A partial spanning
tree is generated from the connectivity graph by selecting a
path between two random terminals. The rest of the terminals
are connected by adding the path to the nearest vertex of the
tree. If no path is found for at least a terminal, the service
request is rejected.

The bandwidth requirements of each trunk edge of the
tree are derived in each direction by summing the ingress
bandwidths of the leaves reachable in one direction, and
summing the egress bandwidths of the leaves reachable in the
opposite direction, and choosing the minimum. A bandwidth
requirement is thus yielded in each direction for that edge.
Figure [4a] shows a tree connecting for terminal vertices, and
the sums of the ingress and egress bandwidth requirements
for circuits at each terminal. Figure b shows a pair of sums
applied in each direction on each edge. The minimum of each

pair is chosen as the bandwidth requirement of the edge in the
pair’s direction (Figure [c)).

Each trunk edge’s bandwidth requirements are checked
against the trunk’s available capacity. If a trunk cannot meet
the computed requirements, the tree is rejected; one trunk edge
is eliminated, and the algorithm attempts to build and validate
a new tree.

If all trunks meet bandwidth requirements, then the tree is
used to generate the algorithm results. A spare label is allocated
for each trunk whose edge contributes to the tree, and this
label is combined with the trunk’s requirements to produce
the resultant trunk allocations. The terminals of each selected
trunk have the trunk’s allocated label attached to identify a pair
of circuits. Each circuit is annotated with an ingress rate, the
trunk’s bandwidth requirement flowing to that circuit’s terminal,
and with an egress rate, the trunk’s bandwidth flowing from it.
Each input terminal is augmented with its corresponding label
to identify a circuit, which is then similarly annotated with
ingress and egress rates of the input terminal. The annotated
circuits derived from selected trunks and input terminals are
grouped by subnetwork, and each group forms a segment
descriptor for that subnetwork.

D. Implementation

The DPB code is currently released under a 3-clause BSD
license El It consists of ~36k lines of Java, and ~2.5k of
Python (Ryu controller applications for DPB adaptors). State
is persisted in SQLite databases.

DPB exposes a north-bound interface supporting the creation
and management of point-to-point and multi-point connectivity
services with bandwidth control, and is accessible via a REST
API, as well as via SSH. In parallel, users can experiment
with API using a simple command-line client. The DPB
Adaptor layer provides extensive modularity and developers can
readily implement custom adaptors for different technologies.
Finally, the DPB codebase offers a fully functional WIM driver,
compatible with the WIM driver model of OSM release 5.

1V. EVALUATION

In this section we evaluate the scalability and performance of
DPB. Our evaluation focuses on two aspects: the scalability of
the path computation algorithm in the aggregator (§ and
the impact of DPB on the performance of a service orchestrator
(§ . In our evaluation, we use an experimental testbed with
three OpenStack clusters representing three distinct network
sites. OpenStack clusters are connected via a CORSA switch
using virtual switches, while the switch metering capabilities
are used to emulate network link properties. Table [[] presents
the technical characteristics of our testbed.

A. Scalability Analysis

To test the scalability of the spanning-tree algorithm, we
randomly generated four scale-free undirected graphs of size
54, 72, 96 and 128, using the Barabasi-Albert model. For each
graph vertex, we create an emulated logical switch and we

2codehttp://sce-forge.lancaster.ac.uk/svn-repos/initiate/dataplanebroker/

http://scc-forge.lancaster.ac.uk/svn-repos/initiate/dataplanebroker/

TABLE I: Experiment Set-ups

System
Computing Infra.

Specifications

Dell Servers equipped with Intel Xeon ES-
2630 (32 cores) CPU and 128 GB Memory
CORSA DP2100 equipped with 10 Gbit/s
SFPs

ETSI OSM R5.0 with DPB plugins
OpenStack Queens/Rocky releases

Ryu OF controller

Networking Infra.

Service Orchestrator
VIM
Network Controller

T
54 nodes
72nodes - - - -
96 nodes

6 F 128 nodes —-—--

; i .
P AN .

o, ’
N .
A S T Y SN

AM el -
A VN o LV e nt

Service est. time (ms)
n
T

0 50 100 150 200 250 300
prior services

Fig. 5: Establishment latency given prior services

attached a host terminal to it. Logical switches are configured
to connect to a single emulated aggregator. For each edge, we
create a terminal node on each switch and connect them using
an emulated trunk. Each trunk link has a capacity of nGbit/s,

where n is the minimum of the two connecting nodes’ degrees.

For each experimental run, we generated service requests of
10 Mbit/s circuits between a randomly selected set of 2 to
4 nodes and monitor the computational time, until network
resources are exhausted and the aggregator cannot fulfill new
requests.

Figure [3] and Figure [6] reports the mean time to process
a service request (100 runs), when a number of service and
circuits respectively are already deployed, (existing service
number varies between 1 and 300). From our results, we
highlight that the path computation algorithm used by the
aggregator has a bound execution time, which depends to the
size of the network. Furthermore, the major latency component
is the linear polling of individual switches by the aggregator, in
order to obtain accurate state information of inferior networks.
While this latency could contribute significantly in practice,
various strategies can be adopted to minimize its impact.
Specifically, network models can be cached (i.e. they do not
need to be recomputed), logical switches can be co-located
with the aggregator to minimize propagation latencies, while
aggregator hierarchies can amortize propagation latencies in
high bandwidth/delay networks. In addition, we note in the
obtained results that the number of deployed services has an
impact on path computation complexity but only for lightly
used network infrastructures, where the computational latency
is doubled, but these latencies become significantly lower for
highly utilized networks. As trunk resources are allocated to
new service, trunk capacities are reduced and the algorithm
excludes trunks with insufficient capacity, thus operating on a
smaller graph.

T
54 nodes
72nodes - - - -
96 nodes -

128 nodes —-—-- 1

iy i)
EA AR

LA
v

Ly
oy
\

o

Wy

b L
RN NN Y & N RN Nl i Ay sy e AR
o h M 2, ey e v .J/.‘\‘,_//_/_;I-V,\v/ AR

Service est. time (ms)
S

0 50 100 150 200 250 300
prior circuits

Fig. 6: Establishment latency given prior circuits

B. Performance Analysis

To evaluate the impact of DPB on multi-site service
orchestration, we used the WIM driver for OSM to orchestrate
a multi-site CDN network service. The CDN service is depicted
in Figure [/| and consists of a firewall (FW) VNF (iptables),
an L4-Load Balancer (LB) VNF (OpenVSwitch) and multiple
content cache VNFs (Apache). All VNFs are build using an
Ubuntu 14.04 cloud image and rely on distribution packages
to deliver their functionality. OSM deployment is achieved
through a set of yaml files containing the Network Service
Descriptor (NSD) and the VNF Descriptors (VNFDs) following
the ETSI MANO data model. In addition, we used the MON
and POL modules of OSM to deliver run-time scale-in policy

based on observer CPU utilization.
WEB
Cache

L3-Firewall » Load
Balancer

Q: s

Fig. 7: A CDN service comprises of a service chain of a firewall, load
balancer and cache

The CDN service is deployed across three sites and the
deployment topology is depicted in Figure [8] The firewall was
deployed on an edge cloud adjacent to the client and was
configured to filter out non-cache traffic. The Load-Balancer
was statically deployed on VIM Site-1 and distributed web
requests on a dynamic set of VNF caches. The first VNF cache
was distributed on the same VIM as the Load-Balancer, while
subsequent replicas were deployed on Site-2 VIM.

1G
Cache LB Guaranteed Cache
Bandwidth
Core-Cloud

> Core-Cloud
Site-1

16 Site-2

Guaranteed
Bandwidth

=

Edge-Cloud

Clients

Fig. 8: CDN service orchestration across three sites. By increasing the
load more caches are deployed to the core-cloud?2.

We measured the impact of DPB on the initial deployment
process. Specifically, we deployed the CDN VNFD on our plat-
form multiple times and using information from the Resource
Orchestrator (RO) logs, we measured the deployment time
of different components of the services. For this experiment
we define two latency metrics: Virtual Infrastructure set-up,
which describes the time required to boot and configure
all service VNFs, and the WAN connectivity set-up, which
describes the time required to deploy the connectivity services
using DPB. Table [l reports the mean and standard deviation
of the aforementioned metrics for 10 experiment runs. We
highlight that OSM requires 10 seconds to deploy the required
connectivity service using the DPB driver. From an overall
service deployment perspective, this latency is minimal and
increases the overall deployment time by only 8%, since the
service requires on average 128 seconds to be deployed in
our local testbed. It is worth to highlight, that in a real world
scenario the propagation delay would be significantly higher
than in our experiment and the estimated WAN set-up time
would be slightly increased, but we do not expect to have
an increase more than 10% of the overall time, since this
latency inflation would be similar for all service management
components.

TABLE II: Latency to deploy and configure the compute and network
resources in our multi-site CDN service. DPB incurs less than 10%
increase in the overall deployment time.

Metrics (sec) Mean Stddev

Virtual Infra. set-up 118 7.52E-5
WAN set-up 10 7.40E-5
Total Service Bootstrap 128 1.33E-4

V. CONCLUSION AND FUTURE WORK

Support for multi-site service deployment is currently a
major functional requirement for NFV standardization, which is
hinder by the lack of support for network resource orchestration.
Relevant standards currently offset the responsibility for inter-
site connectivity to a special VIM type capable to control WAN
networks, called WIM. Nonetheless, there is no standard yet
released regarding a WIM data model or interface. Nonetheless,
OSM, the reference NFV-MANO implementation, has released
a de-facto standard for a WIM lifecycle.

This paper presented DPB, the first open-source WIM
implementation for SDN networks. DPB enable hierarchical
control of programmable WANSs, defines a detailed WAN
control data model and provides out-of-the-box support for
multi-site OSM service orchestration. Furthermore, using a
series of emulation we demonstrated that DPB can support
a large networks and increasing numbers of service request
with small computational overhead, while establish inter-site
connectivity in OSM using DPB increases service delivery
latency by 8%.

We believe that the release of the DPB framework will offer
the opportunity for further development of multi-site support
in service orchestration standardization. Firstly, during our
experimentation we identified a number of shortcoming in
existing data models with respect to multi-site support. For
example, IP address allocation in OSM cannot function for

multi-site service delivery since the model forces the same IP
ranges to be used in all VLDs. Secondly, our implementation
uses a variation of the spanning tree algorithm to compute
service paths. Nonetheless, the multi-layer design of the data
model in DPB offer the opportunity to explore multiple different
optimization algorithms for path estimation and effectively
a highly realistic framework to evaluate different function
placement strategies.

REFERENCES

[1] A. Bravalheri, A. S. Mugaddas, N. Uniyal, R. Casellas, R. Nejabati, and
D. Simeonidou. Vnf chaining across multi-pops in osm using transport
api. In 2019 Optical Fiber Communications Conference and Exhibition
(OFC), pages 1-3, March 2019.

[2] D. Ceccarelli and Y. Lee. Framework for abstraction and control of te
networks (actn). RFC 8453, RFC Editor, August 2018.

[3] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann. Cloud ran for mobile networksaATa technology
overview. IEEE Communications Surveys Tutorials, 17(1):405-426,
Firstquarter 2015.

[4] Product Overview. https://www.corsa.com/products/,

[5] E. Crabbe, I. Minei, J. Medved, and R. Varga. Path computation element
communication protocol (pcep) extensions for stateful pce. RFC 8231,
RFC Editor, September 2017.

[6] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang.
Mobile edge cloud system: Architectures, challenges, and approaches.
IEEE Systems Journal, 12(3):2495-2508, Sep. 2018.

[7] A. Mendiola, J. Astorga, J. Ortiz, J. Vuleta-RadoiAmiAG, A. Juszczyk,
K. Stamos, E. Jacob, and M. Higuero. Towards an sdn-based bandwidth
on demand service for the european research community. In 2017
International Conference on Networked Systems (NetSys), pages 1-6,
March 2017.

[8] ETSI NFV. ETSI NFV SIG. https://www.etsi.org/technologies/nfVv.

[9]1 B. Nogales, 1. Vidal, D. R. Lopez, J. Rodriguez, J. Garcia-Reinoso,

and A. Azcorra. Design and deployment of an open management

and orchestration platform for multi-site nfv experimentation. /EEE

Communications Magazine, 57(1):20-27, January 2019.

Guy Roberts, Tomohiro Kudoh, Inder Monga, Jerry Sobieski, Chin Guok,

and John MacAuley. Network Services Framework v2.0. Technical

report, Open Grid Forum, 2014.

ETSI SGI. Network Functions Virtualisation (NFV); Infrastructure;

Network Domain . Technical report, 2014.

ETSI SGI. Network Functions Virtualisation (NFV) Release 3; Manage-

ment and Orchestration; Report on Management and Connectivity for

Multi-Site Services . Technical report, 2018.

[10]

[11]

(12]

https://www.corsa.com/products/
https://www.etsi.org/technologies/nfv

	Introduction
	Multi-site Service Deployment
	Data Plane Broker
	Data Model
	Logical Switch and Adaptor Layer
	Aggregator Layer
	Implementation

	Evaluation
	Scalability Analysis
	Performance Analysis

	Conclusion and Future Work
	References

